- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Augustin‐Lawson, Richards (1)
-
Dong, Lin (1)
-
Eno, Catherine (1)
-
Flammang, Brooke (1)
-
Sun, Mengdie (1)
-
Urena, Johan (1)
-
Wang, Yuxiao (1)
-
Zhang, Chi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Environmental energy harvesting provides a sustainable solution to energy shortages using clean, renewable sources. Despite advances in technologies like triboelectric nanogenerators (TENGs) and electromagnetic generators (EMGs), many devices are limited to a single‐energy source and specific conditions, limiting their practical applications. This study presents an innovative amphibious hybrid TENG–EMG (HTEG) that overcomes these limitations by coupling TENG and EMG units with a gear set, amplifying power output through rotational motion. The amphibious HTEG efficiently captures and converts energy from various environmental sources, successfully illuminating over 30 light‐emitting diodes and powering a thermohygrometer. Notably, it operates with minimal speed requirements, harnessing energy from a light breeze of 1.56 m s−1or a small water flow of 3.8 L min−1, a significant advantage given that most existing devices require much higher speeds for efficient energy harvesting. Moreover, the amphibious HTEG approves practical for daily outdoor use, such as charging mobile phones and powering small electronics through natural energy sources. Furthermore, it can be manually operated without the need for external elements. This compact, portable, and effective energy harvesting design showcases the ability to capture natural energy across diverse environments, demonstrating it as a versatile solution with significant potential for real‐world applications.more » « less
An official website of the United States government
